CONCENTRAÇÃO DA VITAMINA “E” PRESENTE NO DDOS USANDO CO₂ SUPERCRÍTICO: EXTRAÇÃO E SIMULAÇÃO DO PROCESSO

MARISA FERNANDES MENDES¹
FERNANDO LUIZ PELLEGRIINI PESSOA²
ANGELA MARIA COHEN ULLER³

RESUMO: MENDES, M. F.; PESSOA, F. L. P.; ULLER, A. M. C. Concentração da vitamina e presente no DDOS usando CO₂ supercrítico: Extração e simulação do processo. Revista Universidade Rural: Série Ciências Exatas e da Terra, Seropédica, RJ: EDUR, v.22, n.1-2, p. 33-44, jan. - dez., 2003. Esse trabalho tem como objetivo o desenvolvimento de um processo para a concentração do tocoferol (vitamina E) presente no destilado da desodorização do óleo de soja (DDOS) usando um fluido supercrítico. Vitamina E é produzida sinteticamente, mas hoje em dia o interesse na sua extração a partir de fontes naturais tem aumentado. Portanto, a motivação desse trabalho é concentrar a vitamina E (tocoferol) a partir de um subproduto do processamento do óleo de soja, comumente conhecido como o que está destinado à desodorização. Esse subproduto é muito conhecido por ser rico em compostos de alto valor agregado como os esteróis, tocoferóis, esqualeno e ácidos graxos. A extração com CO₂ supercrítico foi realizada a 40ºC, 60ºC e 80ºC nas pressões de 100 bar, 150 bar, 170 bar e 200 bar e a simulação do processo foi realizada em modo semi-contínuo a 40ºC, 60ºC e 80ºC extrapolando as pressões aplicadas na parte experimental, variando de 90 bar a 350 bar. Os melhores resultados experimentais e simulados foram obtidos a 40ºC e 150 bar onde os tocoferóis foram concentrados em 60%, livres de ácidos graxos.

Palavras-chave: óleo de soja, tocoferol, CO₂ supercrítico, simulação do processo.

ABSTRACT: MENDES, M. F.; PESSOA, F. L. P.; ULLER, A. M. C. Concentration of the vitamin and present in the deodorizer distillate of the soybean oil using supercritical CO₂: Extraction and simulation of the process. Revista Universidade Rural: Série Ciências Exatas e da Terra, Seropédica, RJ: EDUR, v.22, n.1-2, p. 33-44, jan. - dez., 2003. This work aims the study of the concentration of the tocopherol (vitamin E) present in the deodorizer distillate of the soybean oil (DDSO) using supercritical CO₂. Vitamins and sterols are produced synthetically, but nowadays the interest in their extraction from natural sources has increased. Therefore, the motivation of this work is to concentrate the tocopherols present in a by-product of the soybean oil, the deodorizer distillate, which is rich in fatty acids, sterols, tocopherols and squalane. The experimental step was studied at 40ºC, 60ºC and 80ºC varying the pressure from 100 bar to 200 bar and the simulation of the process was done in a semi-batch mode using supercritical carbon dioxide at 40ºC, 60ºC and 80ºC from 50 bar to 350 bar. The better results for concentration factor and efficiency were at 40ºC and 150 bar where the tocopherol could be concentrated up to 60%, free of the fatty acids.

Key words: soybean oil, tocopherol, supercritical CO₂, process simulation.

INTRODUÇÃO

O presente trabalho tem como meta final o desenvolvimento científico de um processo para a concentração da Vitamina E presente no destilado da desodorização do óleo de soja (DDOS) usando CO₂ supercrítico. A grande motivação para esse estudo surge do fato de que o Brasil é o segundo maior produtor de soja do mundo e sua previsão de produção de óleo de soja para 2002 é de 154 milhões de ton (HANNA, 1999). Além disso, o destilado da desodorização é um subproduto do processamento do óleo de soja, gerado na etapa de desodorização, rico em ácidos graxos, vitamina E, esteróis e esqualeno.

A vitamina E é uma mistura de quatro isômeros, α, β, γ e δ-tocoferol, que são muito usados como aditivos em alimentos por terem atividade antioxidante. Estão presentes no DDOS de 10% a 13% em massa. O esqualeno é um hidrocarboneto precursor da biossíntese do colesterol e está
presente em grandes quantidades em óleos de fígado de peixes. Os ácidos graxos compõem 70%-80% do DDOS e o ácido linoleico representa 40%-50% dessa fração (MENDES, 2002). Devido às várias etapas de processamento do óleo de soja, o uso desses ácidos graxos não é permitido às indústrias de alimentos e cosméticos. Os esteróis, presentes em menor quantidade, têm utilização na indústria farmacêutica e, hoje em dia são importados em grandes quantidades devido à sua característica de absorver o colesterol.

Para atingir a meta final do trabalho é necessária a realização de algumas etapas como o conhecimento do comportamento dos sistemas em meio supercrtico, a etapa experimental de concentração da vitamina E do próprio DDOS, a modelagem termodinâmica do equilíbrio de fases, a simulação de um processo usando fluido supercrítico e a análise técnica e econômica do processo.

Nesse trabalho são apresentados os resultados experimentais da etapa de extração, além da modelagem termodinâmica para a realização posterior da simulação do processo semi-contínuo e contínuo de extração com fluido supercrtico.

MATERIAL E MÉTODOS

Materiais

O destilado da desodorização do óleo de soja foi gentilmente cedido pela CEVAL S.A. Analisado por cromatografia a gás acoplado ao espectrômetro de massas, esse destilado é composto por 79% de ácidos graxos, 11% de tocoferóis, 6% de esquilenô e 4% de esteróis e ésteres.

O CO₂ líquido de pureza mínima 99,9% é proveniente da AGA S.A. (Rio de Janeiro).

Processo de Extração Supercritica

A concentração dos tocoferóis foi feita em um extrator de aço inoxidável 316L com um volume de 42ml. A amostragem foi realizada usando a técnica de despressurização através de uma válvula micrométrica (Whitney, modelo SS-31RS4). Uma bomba de alta pressão (Thermo Separation Products, Constatmetric 3200 P/F) é responsável pela alimentação do solvente a uma vazão de 9,31ml/min. O fluxograma do aparato experimental é apresentado na figura 1.

![Fluxograma do aparato experimental](image)

Procedimento Experimental

O extrator é alimentado com aproximadamente 29g de DDOS (70% do volume do extrator) e espera-se até que o extrator alcance a temperatura desejada. Bombear-se um fluxo constante de CO₂ para o alcance da pressão. Após o sistema ter alcançado o equilíbrio, as extrações são realizadas durante 2 horas a 3 horas.

As condições operacionais utilizadas foram 40°C, 60°C e 80°C a 100 bar, 150 bar, 170 bar e 200 bar.

MODELAGEM TERMODINÂMICA

Na predição do equilíbrio de fases dos principais sistemas binários CO₂-α-tocoferol, CO₂-acido linoleico e CO₂-esquenoleno, a equação de estado de Peng-Robinson (1976) com a regra de mistura quadrática de Van der Waals foi utilizada.

O critério de isofugacidade para o equilíbrio líquido - vapor é expresso como

$$\gamma_i^L = \gamma_i^V$$

(1)

Este critério pode também ser expresso como uma função do coeficiente de fugacidade, como pode ser visto na equação 2.

$$x_i \phi_i^L = y_i \phi_i^V$$

(2)

Para o cálculo do coeficiente de fugacidade, foi escolhida a equação de estado de Peng-Robinson (1976) em virtude da mesma já apresentar na literatura resultados satisfatórios a alta pressão para

$$P = \frac{RT}{V-b} - \frac{a}{V(V+b)+b(V-b)}$$

(3)

com

$$a = a_{ci} \cdot \alpha(T, w)$$

(4)

os componentes puros, os parâmetros de energia e covolume podem ser expressos como:

$$a_{ci} = 0,457224 \cdot \frac{(R \cdot T_{ci})^2}{P_{ci}}$$

(5)

$$b_i = b_{ci} = 0,07780 \frac{RT_{ci}}{P_{ci}}$$

(6)

Onde: $\alpha(T, w)$ é a função que é responsável por mostrar a dependência do parâmetro atrativo com a temperatura, Tc e Pc são a temperatura e pressão críticas, respectivamente, V é o volume total do sistema, T é a temperatura e R é a constante universal dos gases. Existem diferentes funções propostas e publicadas na literatura, mas nesse trabalho a função utilizada foi proposta por Almeida et al. (1991).

$$a(T) = \exp\left[\frac{m(1-T_r)}{1-T_r} + \frac{n}{(1-T_r)^2}\right]$$

(7)

onde m, n e T_r são os parâmetros estimados para o cálculo da pressão de vapor dos componentes puros.

A equação de estado de Peng-Robinson foi usada junto com a regra de mistura de Van der Waals com dois parâmetros de interação. A regra de mistura é expressa pelas equações 8 e 9.

$$a_m = \sum_i \sum_j z_i z_j a_{ij}$$

(8)

$$a_{ij} = (1 - k_{ij}) \frac{a_{ai}a_{aj}}{2}$$

(9)

Onde k_{ij} são os parâmetros de interação ajustáveis.

Os parâmetros de interação foram ajustados através do módulo MÁXIMA, que faz parte de um pacote computacional ESTIMA em linguagem FORTRAN, desenvolvido por Pinto et al. (1987). Esse método de estimativa de parâmetros é baseado no Método da Máxima Verossimilhança, minimizando a seguinte função objetivo

$$FO = \sum_{i=1}^{N} \left(\frac{p_{cal} - p_{exp}}{\sigma_{P_i}}\right)^2 + \sum_{j=1}^{N} \left(\frac{y_{cal} - y_{exp}}{\sigma_{Y_j}}\right)^2$$

(10)

onde $\sigma_{P_i}^2$ e $\sigma_{Y_j}^2$ são os desvios
experimentais da pressão total do sistema e da fração molar da fase vapor e P^exp, y^exp, y^ai e P^exp são os valores das pressões totais do sistema e fração molar da fase vapor experimental e calculada pelo modelo, respectivamente.

As propriedades críticas do tocoferol, ácido linoleico e esqualeno foram preditas segundo Melo et al. (1996).

A tabela 1 mostra os parâmetros de interação para os sistemas binários, representativos de todas as condições de temperatura e pressão experimentais.

Esses parâmetros foram usados nas etapas de simulação do processo de extração, apresentadas a seguir.

Tabela 1. Apresentação dos parâmetros binários.

<table>
<thead>
<tr>
<th>Sistemas</th>
<th>k_{ij}</th>
<th>l_{ij}</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂-tocoferol</td>
<td>0,10717</td>
<td>0,12360</td>
</tr>
<tr>
<td>CO₂-ácido linoleico</td>
<td>0,07083</td>
<td>0,08850</td>
</tr>
<tr>
<td>CO₂-esqualeno</td>
<td>0,10972</td>
<td>0,11846</td>
</tr>
</tbody>
</table>

SIMULAÇÃO DO PROCESSO SEMI-CÉNTINO

A extração supercritica em modo contínuo foi calculada segundo Melo (1997), onde a separação ocorre pela diferença de afinidade entre os componentes e o solvente supercrítico. A figura 2 mostra o esquema do equipamento utilizado, fazendo-se uma analogia com a destilação em batelada com apenas 1 estágio de equilíbrio.

Nesse caso dois procedimentos de separação foram propostos a fim de se observar o fator de separação entre os compostos. Dois sistemas ternários foram estudados, CO₂-tocoferol-ácido linoleico e CO₂-tocoferol-esqualeno.

As condições operacionais foram as mesmas da etapa experimental, sendo que pressões mais altas foram estudadas nessa etapa. A temperatura variou de 40°C a 80°C e as pressões estudadas foram 90 bar, 100 bar, 150 bar, 200 bar, 250 bar, 300 bar e 350 bar.

Figura 2. Esquema de extração supercritica em modo semi-contínuo

O procedimento da extração se inicia com o carregamento das misturas sintéticas tocoferol/ácido linoleico ou tocoferol/esqualeno no extrator, mantido na temperatura de operação, e pressuriza-se o sistema bombeando-se dióxido de carbono até atingir a pressão desejada. Após o tempo necessário para que o equilíbrio se estabeleça, inicia-se o procedimento propriamente dito da extração, ou seja, faz-se passar CO₂ continuamente pelo extrator, a vazão constante, ajustada de maneira que a fase rica em solvente supercrtico, retirada do mesmo, esteja sempre em equilíbrio com o líquido remanescente no extrator, embora os estados de equilíbrio se alterem continuamente.

Descrito o procedimento da extração e a partir da descrição, aplicando-se a metodologia em um modelo matemático, os balanços de massa podem ser então definidos. O balanço de massa é feito em base livre de solvente e, portanto, as composições do extrato e do rafinado são expressas em frações massicas de tocoferol, ácido linoleico e esqualeno.

O balanço de massa global tem a forma:

$$-\frac{dW}{dt} = D$$ \hspace{1cm} (11)

Onde W é a quantidade de líquido dentro do extrator e D é a vazão de extrato.
O balanço de massa para o tocoferol é dado por
\[
\frac{d}{dt} \left(x \cdot W \right) = y \cdot D \tag{12}
\]

onde, \(x\) e \(y\) são as frações massmas de tocoferol, em base livre de solvente e consequentemente, \((1-x)\) e \((1-y)\) são as frações massmas de ácido linoleico e esquileno para cada problema estudado.

Substituindo a equação (12) na (11), tem-se que:
\[
\frac{d}{dt} \left(x \cdot W \right) = y \cdot \frac{dW}{dt} \tag{13}
\]

Eliminando-se a dependência temporal nos dois lados da equação (13).
\[
d \left(x \cdot W \right) = y \cdot dW \tag{14}
\]

Manipulando-se a equação (14), chega-se a
\[
\frac{dW}{dt} = \frac{W}{y - x} \tag{15}
\]

O equilíbrio de fases estabelece a seguinte relação entre \(x\) e \(y\)
\[
y = k \cdot x \tag{16}
\]

onde, \(k\) é expresso como a razão entre as frações massmas de tocoferol nas fases líquida e vapor, em base livre do solvente.

A equação (15) é uma equação diferencial, de primeira ordem, não-linear, conhecida como equação de Rayleigh e que pode ser facilmente integrada, desde que se conheça a dependência funcional entre \(x\) e \(y\) para uma dada condição de temperatura e pressão, mantidas constantes durante todo o processo de extração. A resolução da equação diferencial é feita pelo método de Runge-Kutta de quarta ordem, a partir da condição inicial, \(W(x_0) = W_0\). Dessa forma é possível acompanhar a quantidade de tocoferol no rafinado com a variação da quantidade de líquido no extrator.

Com essa forma de cálculo é possível calcular a eficiência da extração, entendida como a razão entre a quantidade extraída e a quantidade inicial de líquido dentro do extrator e os fatores de concentração do tocoferol em relação ao ácido linoleico e ao esquileno, alcançado no rafinado.

Como o interesse principal é investigar o quanto é possível concentrar o tocoferol do ácido linoleico e do esquileno, mantendo-se um compromisso do rendimento com o fator de concentração, o comportamento dinâmico do extrator é considerado apenas indiretamente, ou seja, não se acompanha a evolução da extração com o tempo. Esse avanço é controlado através da quantidade extraída, que corresponde a um tempo implícito qualquer.

A equação (15) foi integrada para as diferentes condições de temperatura e pressão estudadas. Para cada passo de integração tem-se um novo valor de \(y\) e correspondente valor de \(x\) é obtido a partir das curvas de equilíbrio. As curvas de equilíbrio foram geradas com o cálculo do flash isotérmico feito para as duas misturas, \(CO_2\cdot \alpha\)-tocoferol-ácido linoleico e \(CO_2\cdot \alpha\)-tocoferol-esquileno, para as mesmas condições de temperatura e pressão. A metodologia utilizada foi a mesma realizada por Melo (1997) estudando misturas com razões massmas diferentes entre \(\alpha\)-tocoferol e ácido linoleico e entre \(\alpha\)-tocoferol e esquileno e, para cada mistura binária, foi alterada a composição inicial, mantendo-se essa razão constante por variação da proporção de dióxido de carbono. Deste modo, foram geradas 64 misturas binárias e 32 misturas ternárias para cada caso.

A integração numérica foi efetuada com o passo de integração igual a \(-0.005\) e o número máximo de pontos igual a 200. Os limites de integração foram estabelecidos de modo que a mesma fosse finalizada quando a massa de DDOS remanescente no extrator fosse menor que 5% do valor contido inicialmente ou quando a fração massma de tocoferol na fase líquida, em base livre de solvente, fosse menor que...
0,005. A evolução da extração é acompanhada pela quantidade de DDOS extraída, segundo a forma adimensionalizada 1-W/\(W_0\), onde \(W_0\) é a massa de DDOS inicialmente introduzida no extrator e \(W\) a massa de DDOS presente no extrator em um instante qualquer.

SIMULAÇÃO DO PROCESSO CONTÍNUO

Os trabalhos encontrados até então utilizando a extração com fluido supercrítico tratam de processos estudados em escala de laboratório, não sendo encontrados trabalhos que envolvam a simulação de processos em escala piloto ou até mesmo industrial.

![Fluxograma](image)

Figura 3. Processo proposto por Sievers (1996) para a extração de produtos naturais fazendo-se o reciclo do \(\text{CO}_2\) supercrítico (SC).

Esse processo opera da seguinte forma: a corrente de alimentação, correspondente à matéria-prima, é alimentada no extrator (E) e o \(\text{CO}_2\) (fluido supercrítico) passa por um compressor (C1) e um trocador de calor (W1) até sua entrada no extrator (E). Neste vaso, o fluido supercrítico entra em contato com a matéria-prima e são formadas duas fases. A fase pobre em soluto é descartada como produto de fundo do extrator e a fase rica em soluto contendo o fluido supercrítico é reduzida, permitindo que o soluto seja separado, gerando o produto desejado na corrente de fundo do separador. O solvente supercrítico que sai do vaso de separação passa através de um compressor (C3) e um trocador de calor (W4) de maneira a preparar novamente o solvente para as condições supercríticas adequadas de temperatura e pressão para o processo de extração.

A simulação foi realizada em um simulador comercial, o ASPEN+, considerando o mesmo modelo termodinâmico da simulação em modo semi-contínuo, considerando o DDOS como uma mistura quaternária \(\text{CO}_2\)-tocoferol-ácido linoleico-esqualeno.
RESULTADOS E DISCUSSÕES

Como foram muitas as condições operacionais estudadas, mostrar-se-ão apenas aquelas que apresentaram o resultado mais eficiente em termos da concentração da vitamina E.

As curvas de extração experimentais são apresentadas para a pressão de 150 bar. Já os resultados das simulações são apresentados para todas as condições operacionais.

Os resultados gerados pelas simulações são comparados aos experimentais, segundo a eficiência do processo (E), definida como a razão entre a massa extraída e a massa inicial, e o fator de concentração (FC), definido como a razão entre os coeficientes de distribuição de cada composto.

A figura 4 apresenta a curva de extração em função do tempo para as três temperaturas estudadas a 150 bar. Nesse caso, a maior eficiência ocorre a 40°C, observando para as demais temperaturas menores quantidades extraídas, assim como observado por Brunner et al. (1991).

Figura 4. Curva de extração em função do tempo operacional para a pressão de 150 bar.

A tabela 2 mostra a eficiência do processo para as temperaturas estudadas a 150 bar.

Observa-se que com o aumento da temperatura a eficiência diminui. Isto se deve à diminuição da densidade do solvente, diminuindo assim o poder de solvência do CO₂.

Tabela 2. Eficiência para as temperaturas estudadas, a 150 bar.

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>Eficiência (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>50,87</td>
</tr>
<tr>
<td>60</td>
<td>29,04</td>
</tr>
<tr>
<td>80</td>
<td>10,13</td>
</tr>
</tbody>
</table>

De maneira a corroborar os resultados experimentais e explorar novas condições operacionais, a simulação do processo semi-contínuo foi investigada.

As figuras 5 e 6 mostram, assim como a figura 4, a simulação da massa extraída para as três temperaturas estudadas a 150 bar, para a separação entre tocoferol/ácido linoleico e tocoferol/esqualeno, respectivamente. Observa-se que o mesmo comportamento foi corroborado com o experimental com relação à eficiência, sendo menos influenciado para a separação entre tocoferol/ácido linoleico.

Além dessas figuras 5 e 6, os dados gerados pelas simulações são apresentados para todas as temperaturas variando a pressão de 90 bar a 350 bar, para os dois casos simulados visualizando a separação entre tocoferol e ácido linoleico e entre tocoferol e esqualeno. As curvas das figuras 7, 8 e 9 apresentam as simulações da separação entre tocoferol e esqualeno e as figuras 10, 11 e 12 entre tocoferol e ácido linoleico.

Figura 5. Massa extraída em função da massa ainda remanescente no extrator para o sistema ternário CO₂-tocoferol-esqualeno para as três temperaturas a 150 bar.

Figura 6. Massa extraída em função da massa ainda remanescente no extrator para o sistema ternário CO₂-tocoferol-esqualeno para as três temperaturas a 150 bar.

Apesar dos resultados experimentais serem acompanhados com o tempo, os resultados das simulações tiveram comportamento qualitativo muito semelhante aos experimentais. Para melhor comparar, são apresentados os valores de eficiência e fator de concentração na tabela 3.

Os fatores de concentração são maiores para a separação entre tocoferol e ácido linoleico comparados aos obtidos entre tocoferol e esqualeno. Isso significa que a separação entre o tocoferol e os ácidos graxos é mais fácil de ocorrer. A explicação para o fato de que separar o tocoferol do esqualeno é mais difícil deve-se à volatilidade do tocoferol ser muito próxima à do esqualeno.

<table>
<thead>
<tr>
<th>T(°C)</th>
<th>Tocoferol-Ácido Linoleico</th>
<th>Tocoferol-Esqualeno</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P(bar)</td>
<td>E (%)</td>
</tr>
<tr>
<td>40°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>40</td>
<td>93,10</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>89,58</td>
</tr>
<tr>
<td>150</td>
<td>150</td>
<td>89,01</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>89,13</td>
</tr>
<tr>
<td>250</td>
<td>250</td>
<td>87,34</td>
</tr>
<tr>
<td>300</td>
<td>300</td>
<td>85,77</td>
</tr>
<tr>
<td>350</td>
<td>350</td>
<td>77,59</td>
</tr>
<tr>
<td>60°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>60</td>
<td>92,74</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>92,34</td>
</tr>
<tr>
<td>150</td>
<td>150</td>
<td>94,99</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>84,13</td>
</tr>
<tr>
<td>250</td>
<td>250</td>
<td>31,09</td>
</tr>
<tr>
<td>300</td>
<td>300</td>
<td>75,94</td>
</tr>
<tr>
<td>350</td>
<td>350</td>
<td>79,34</td>
</tr>
<tr>
<td>80°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>80</td>
<td>94,22</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>93,55</td>
</tr>
<tr>
<td>150</td>
<td>150</td>
<td>93,17</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>78,02</td>
</tr>
<tr>
<td>250</td>
<td>250</td>
<td>85,93</td>
</tr>
<tr>
<td>300</td>
<td>300</td>
<td>78,10</td>
</tr>
<tr>
<td>350</td>
<td>350</td>
<td>53,12</td>
</tr>
</tbody>
</table>

Figura 7. Variação da massa extraída de tocoferol com a fração de "borra" retirada do extrator (1-W/Wo) a 40°C e pressões de 90, 150, 200, 250, 300 e 350 bar.

Figura 8. Variação da massa extraída de tocoferol com a fração de "borra" retirada do extrator (1-W/Wo) a 60°C e pressões de 90, 150, 200, 250, 300 e 350 bar.

Figura 9. Variação da massa extraída de tocoferol com a fração de "borra" retirada do extrator (1-W/Wo) a 80°C e pressões de 150, 200, 250, 300 e 350 bar.

Figura 11. Variação da massa extraída de tocoferol com a fração de "borra" retirada do extrator (1-W/Wo) a 60°C e pressões de 90, 150, 200, 250, 300 e 350 bar.

Figura 10. Variação da massa extraída de tocoferol com a fração de "borra" retirada do extrator (1-W/Wo) a 40°C e pressões de 90, 100, 200, 250 e 350 bar.

Figura 12. Variação da massa extraída de tocoferol com a fração de "borra" retirada do extrator (1-W/Wo) a 80°C e pressões de 100, 200 e 250 bar.

Os fatores de concentração, tanto em relação ao ácido linoleico quanto ao esqualeno, diminuem com o aumento da pressão.

Os melhores resultados encontrados na simulação em modo semi-continuo foram aplicados no processo contínuo de maneira a simular um processo industrial que concentre a vitamina E. O sucesso da simulação do processo contínuo leva à avaliação econômica do processo mostrando a viabilidade de um processo industrial de extração com fluido supercrítico. No processo contínuo, uma mistura quaternária foi estudada composta do dióxido de carbono, tocoferol, ácido
linoleico e esqualeno, sob as mesmas proporções encontradas na “borra” original e normalizadas. A tabela 4 mostra as eficiências e fatores de concentração encontrados na simulação do processo contínuo, considerando o DDOS como uma mistura quaternária CO₂-tocoferol-ácido linoleico-esqualeno.

Tabela 4. Eficiência e fatores de concentração calculados a partir da simulação contínua.

<table>
<thead>
<tr>
<th>P (bar)</th>
<th>Eficiência (%)</th>
<th>Tocoferol-Ácido linoleico</th>
<th>Tocoferol-Esqualeno</th>
</tr>
</thead>
<tbody>
<tr>
<td>40°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>48,23</td>
<td>10,4241</td>
<td>0,7020</td>
</tr>
<tr>
<td>150</td>
<td>34,59</td>
<td>16,7415</td>
<td>0,5730</td>
</tr>
<tr>
<td>60°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>35,39</td>
<td>1,2227</td>
<td>0,5001</td>
</tr>
<tr>
<td>150</td>
<td>46,44</td>
<td>3,6100</td>
<td>1,0206</td>
</tr>
<tr>
<td>80°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>36,28</td>
<td>1,0309</td>
<td>0,5000</td>
</tr>
<tr>
<td>150</td>
<td>49,70</td>
<td>1,3350</td>
<td>1,0278</td>
</tr>
</tbody>
</table>

Com a simulação concluiu-se que a melhor condição operacional foi a 40°C e 150 bar, onde os fatores de concentração obtiveram os mesmos comportamentos anteriores, maior entre tocoferol e ácido linoleico.

O sucesso da simulação foi obter um produto livre de ácidos graxos, apesar da eficiência ser da ordem de 40%.

CONCLUSÕES

Nesse trabalho foi estudada a concentração da Vitamina E presente no DDOS, usando CO₂ supercrítico, em um processo semi-contínuo e contínuo. Os resultados experimentais foram apresentados a 150 bar e a melhor condição foi a 40°C. Os resultados obtidos da simulação também mostraram que à medida que a temperatura aumenta, a eficiência e a tendência do fator de concentração diminui. Isso porque a pressão e temperatura altas, a solubilidade dos tocoferóis aumenta e os mesmos são extraídos juntamente com os ácidos graxos e esqualeno. Fica claro pelos resultados que a separação dos ácidos graxos é maior, enquanto que o esqualeno é concentrado junto com os tocoferóis.

A simulação em modo semi-contínuo dos sistemas ternários em separado representou bem o que seria o comportamento da separação do sistema quaternário CO₂-tocoferol-ácido linoleico-esqualeno. Os resultados mostraram-se favoráveis a implementação da planta industrial visto à alta recuperação de vitamina E. Apesar da mesma estar concentrada junto com o esqualeno, não existe no âmbito da literatura e comercial nenhuma restrição à união desses compostos.

AGRADECIMENTOS

Ao CNPq, pelo apoio financeiro e à CEVAL, pela obtenção da matéria-prima. À EMBRAPA e ao IQ/UFRJ, pelas análises cromatográficas. À Universidade de Trieste, Itália, pelo uso do simulador ASPEN+.

REFERÊNCIAS BIBLIOGRÁFICAS
